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Abstract
We review the theoretical description of spin–orbit (SO) scattering and electron
spin resonance (ESR) in carbon nanotubes. Particular emphasis is laid on
the effects of electron–electron interactions. The SO coupling is derived and
the resulting ESR spectrum is analysed using both the effective low-energy
field theory and numerical studies of finite-size Hubbard chains and two-leg
Hubbard ladders. For single-wall tubes, the field theoretical description predicts
a double-peak spectrum linked to the existence of spin–charge separation. The
numerical analysis basically confirms this picture, but also predicts additional
features in finite-size samples.

1. Introduction

Nanotubes constitute a new class of mesoscopic quantum wires characterized by the interplay
of strong electron–electron interactions, low dimensionality, disorder and unconventional
spin dynamics [1–8]. In a sense, they represent an ideal model for strongly correlated
mesoscopic systems, where in fact basically all known effects in mesoscopic physics have
been experimentally observed. Two main classes of nanotubes can be distinguished, namely
single-wall nanotubes (SWNTs), which consist of just one wrapped-up graphene sheet with
radius R in the nanometre regime, and multiwall nanotubes, which contain additional inner
shells [5]. Here we will focus on the conceptually simplest case of metallic SWNTs, where
interactions should completely destroy the Fermi liquid picture and imply a so-called Luttinger
liquid (LL) state of matter [6, 7]. The LL is the generic low-energy description of metallic 1D
(single-channel) quantum wires [9].

3 Author to whom any correspondence should be addressed.

0953-8984/04/171437+16$30.00 © 2004 IOP Publishing Ltd Printed in the UK S1437

http://stacks.iop.org/JPhysCM/16/S1437


S1438 A De Martino et al

Evidence for the LL behaviour of interacting 1D electrons has been reported for charge
transport in SWNTs [2–4]. However, in such materials one also expects to find more dramatic
consequences of the breakdown of Fermi liquid theory, most notably the phenomenon of spin–
charge separation. This many-body effect asserts that electrons brought into a LL effectively
break up into a charge and a spin part that travel with different velocities and hence will be
spatially separated after some time. A recent proposal to detect evidence for spin–charge
separation in SWNTs has been based on spin transport [8]. A different (and perhaps easier to
realize) proposal based on electron spin resonance (ESR) is reviewed in this paper, expanding
on our short paper [10]. ESR is a valuable experimental tool for probing the intrinsic spin
dynamics of many systems. In ESR experiments one applies a static magnetic field and
measures the absorption of radiation polarized perpendicular to the field direction. In the
absence of SU(2) spin symmetry breaking terms in the Hamiltonian, the absorption intensity
is then simply a δ peak at the Zeeman energy [11, 12].

Since spin–orbit (SO) interactions are generally the leading terms breaking the SU(2)
invariance, deviations in the ESR intensity from the δ peak, e.g. shifts or broadenings, are
directly connected to these couplings. Below we theoretically address the SO interaction
and the resulting ESR spectrum for interacting SWNTs, using both a continuum field theory
and a Hubbard model description. Within the effective field theory, the single δ peak is split
into two narrow peaks in SWNTs if spin–charge separation is realized. Otherwise the ESR
spectrum would form a broad band with thresholds at the lower and upper edges [13]. This
qualitative difference is caused by the fact that the SO interaction in SWNTs does not spoil
spin–charge separation to leading order. Experimental observation of the peak splitting could
therefore provide evidence for the elusive phenomenon of spin–charge separation [9]. To
experimentally check the predictions made below, samples free of magnetic impurities have to
be used. Such impurities have probably spoiled previous ESR measurements for nanotubes [5].

The outline of this paper is as follows. In section 2 the LL theory of carbon nanotubes
is reviewed in detail and we give an introduction to ESR theory relevant for our purposes.
The SO interaction is derived in section 3, followed by a detailed discussion of the low-
energy theory predictions for the ESR spectrum in section 4. An alternative approach is to
use numerical methods to compute the ESR spectrum for microscopic lattice fermion models.
We shall use both a Hubbard chain and the more realistic two-leg Hubbard ladder formulation
of interacting SWNTs [14]. While charge transport does not allow for such a description due
to the importance of long-range interactions, it turns out that, for ESR spectra, only short-
range interactions are important. These are correctly captured by Hubbard-type models, and
therefore such models are expected to be appropriate for the quantitative description of ESR
spectra in SWNTs. We discuss this approach in section 5 and compare the numerical results
with the field-theoretical predictions. Finally, in section 6 conclusions and a brief outlook are
provided. In most of this paper, we use the conventions h̄ = c = 1 to simplify notation.

2. Basics

2.1. Luttinger liquid theory

Starting from a microscopic lattice description of the SWNT, inclusion of the interactions
among electrons leads to rather complicated models. In the case of short-ranged interactions,
one can study Hubbard-type models and we will do so in section 5. For low-energy phenomena
such as ESR, however, only bands close to the Fermi energy matter. The relevant electronic
properties of (not too thin) SWNTs are then caused only by the π electrons of the wrapped
graphene sheet. On energy scales |E | < D = h̄vF/R ≈ 1 eV around the Fermi energy EF
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(here vF is the Fermi velocity), the graphene band structure takes a simple form allowing us to
develop a powerful field-theoretic framework for SWNTs [6] reviewed below. We mention in
passing that it can be explicitly demonstrated that bands sufficiently far away from the Fermi
surface will not change the results obtained from field theory; for an explicit discussion, see [9].

Simple tight-binding band structure calculations for graphene reveal that there are only
two linearly independent Fermi points (‘flavours’) with coordinates α �K in the first Brillouin
zone (α = ±), instead of a continuous Fermi surface [1]. For |E | < D, the dispersion relation
around the Fermi points is highly linear (two-dimensional light cone). Since the basis of the
graphene honeycomb lattice contains two atoms, there are two sublattices p = ±, and hence
two degenerate Bloch states

ϕpα(�r) = (2πR)−1/2 exp(−iα �K · �r) (1)

at each Fermi point α = ±. Here �r = (x, y) lives on the sublattice p under consideration and
the correct normalization for nanotubes has been anticipated. The Bloch functions are defined
separately on each sublattice such that they vanish on the other. One can then expand the
electron operator in terms of these Bloch functions. The resulting effective low-energy theory
of graphene is the 2D massless Dirac Hamiltonian, as follows also from standard �k · �p theory.

Wrapping the graphene sheet into a cylinder then leads to transverse momentum
quantization, and hence to the effectively 1D band structure of a metallic SWNT. Taking the
x axis along the tube direction and the circumferential variable as 0 < y < 2πR, quantization
of transverse motion now allows for a contribution ∝exp(imy/R) to the wavefunction.
However, excitation of angular momentum states other than m = 0 costs a huge amount
of energy, of the order of D. Assuming that the SWNT is not excessively doped, following
our above remarks, in field theory we may then omit all transport bands except m = 0. The
theory will then apply on energy scales |E | < D and length scales larger than the graphene
lattice spacing a ≈ 0.246 nm.

Evidently, a SWNT then forms a truly 1D quantum wire with only two spin-degenerate
bands intersecting the Fermi energy. To take this into account, the electron operator for spin
σ = ± is written as

�σ (x, y) =
∑
pα

ϕpα(x, y)ψpασ (x), (2)

which introduces 1D fermion operatorsψpασ (x). Neglecting interactions for the moment, the
Hamiltonian is

H0 = −vF

∑
pασ

p
∫

dx ψ†
pασ ∂xψ−pασ , (3)

which is equivalent to a massless 1D Dirac Hamiltonian, where vF = 8 × 105 m s−1.
Next we discuss interactions mediated by the (possibly externally screened) Coulomb

potential U(�r − �r ′). The precise form of this potential will, of course, depend on details of
the set-up. In the simplest case, bound electrons and the effects of an insulating substrate are
described by a dielectric constant κ , and for the long-range Coulomb interaction

U(�r − �r ′) = e2/κ√
(x − x ′)2 + 4R2 sin2[(y − y ′)/2R] + a2

z

, (4)

where az ≈ a denotes the average distance between a 2pz electron and the nucleus, i.e. the
‘thickness’ of the graphene sheet. Electron–electron interactions are then described by

HI = 1
2

∑
σσ ′

∫
d�r

∫
d�r ′�†

σ (�r)�†
σ ′(�r ′)U(�r − �r ′)�σ ′(�r ′)�σ (�r) (5)
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which is brought into a 1D form by inserting equation (2) for the electron field operator,
allowing us to employ the large arsenal of theoretical methods available only in 1D [9]. The
result is

HI = 1
2

∑
pp′σσ ′

∑
{αi}

∫
dx dx ′ V pp′

{αi} (x − x ′)ψ†
pα1σ

(x)ψ†
p′α2σ

′(x ′)ψp′α3σ ′(x ′)ψpα4σ (x), (6)

with 1D interaction potentials

V pp′
{αi} (x − x ′) =

∫
dy dy ′ ϕ∗

pα1
(�r)ϕ∗

p′α2
(�r ′)U(�r − �r ′ + p �dδp,−p′)ϕp′α3(�r ′)ϕpα4(�r). (7)

These potentials only depend on x − x ′ and on the 1D fermion quantum numbers. For
interactions involving different sublattices p �= p′ for �r and �r ′ in equation (5), a sublattice shift
vector �d arises [7]. To simplify the resulting 1D interaction (6), one can exploit momentum
conservation. Provided we stay away from the charge neutrality point EF = 0, umklapp
electron–electron scattering processes can be ignored,and the situation simplifies considerably.
We then have only ‘forward scattering’ processes [7], where α1 = α4 and α2 = α3, and
‘backscattering’ processes, with α1 = −α2 = α3 = −α4.

Next we introduce the potential

V0(x − x ′) =
∫ 2π R

0

dy

2πR

∫ 2π R

0

dy ′

2πR
U(�r − �r ′). (8)

For the unscreened Coulomb interaction (4), this can be explicitly evaluated [7]. From
equations (7) and (1), the forward scattering interaction potential is V0(x) + δp,−p′δVp(x),
with

δVp(x) =
∫ 2π R

0

dy dy ′

(2πR)2
[U(x + pdx, y − y ′ + pdy)− U(x, y − y ′)], (9)

which is only present if �r and �r ′ are located on different sublattices. Thereby information about
the discrete nature of the graphene network has been kept despite the low-energy continuum
approximation. Since V0(x) treats both sublattices on an equal footing, the resulting forward
scattering interaction part couples only the total 1D electron densities:

H (0)
I = 1

2

∫
dx dx ′ ρ(x)V0(x − x ′)ρ(x ′), (10)

where ρ(x) = ∑
pασ ψ

†
pασψpασ . This part of the electron–electron interaction is the most

important one and is responsible for the LL behaviour. Note that it is due to the long-ranged tail
of the Coulomb interaction. The remaining interactions originate from short-ranged interaction
processes, and since these are effectively averaged over the tube circumference, their amplitude
is quite small, scaling as 1/R. Such couplings are seen below to cause only exponentially small
gaps.

For |x | � a, the term δVp(x) is extremely small. However, for |x | � a, an additional
term beyond equation (10) arises due to the hard core of the Coulomb interaction. At such
small length scales, the difference between inter- and intra-sublattice interactions matters and
δVp(0) must be computed microscopically, leading to a coupling constant f characterizing
the additional forward scattering contribution:

H (1)
I = − f

∫
dx

∑
pαα′σσ ′

ψ†
pασψ

†
−pα′σ ′ψ−pα′σ ′ψpασ , (11)

where f/a = γ f e2/R with a dimensionless constant γ f depending on the tube chirality. An
estimate for armchair SWNTs yields γ f ≈ 0.05, implying that f is very small. A similar
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reasoning applies to the backscattering contributions α1 = −α2 = α3 = −α4 in equation (6).
Because of a rapidly oscillating phase factor, again the only contribution comes from
|x − x ′| � a. Furthermore, only the part of the interaction which does not distinguish between
the sublattices is relevant, leading to

H (2)
I = b

∫
dx

∑
pp′ασσ ′

ψ†
pασψ

†
p′−ασ ′ψp′ασ ′ψp−ασ . (12)

For the unscreened interaction (4), b/a = γbe2/R with γb ≈ γ f . For externally screened
Coulomb interaction, however, one may have b � f .

Further progress can be made by using the Abelian bosonization approach [9]. For that
purpose, one brings the noninteracting Hamiltonian (3) into the conventional form of the 1D
Dirac model by switching to right-and left-movers (r = ±), which are linear combinations of
the sublattice states p = ±. In this representation, an Abelian bosonization formula [6, 7, 9]
applies with four bosonic phase fields θa(x) and their canonical momenta a(x). The four
channels are obtained from combining charge and spin degrees of freedom as well as symmetric
and antisymmetric linear combinations of the two Fermi points, a = c+, c−, s+, s−. The
bosonized expressions for H0 and H (0)

I are

H0 =
∑

a

vF

2

∫
dx [2

a + K −2
a (∂xθa)

2] (13)

H (0)
I = 2

π

∫
dx dx ′ ∂xθc+(x)V0(x − x ′)∂x′θc+(x

′). (14)

The bosonized form of H (1,2)
I [6] leads to nonlinearities in the θa fields for a �= c+. Although

bosonization of equation (3) gives Ka = 1 in equation (13), interactions will renormalize these
parameters. In particular, in the long-wavelength limit, H (0)

I can be incorporated into H0 by
putting

Kc+ = {1 + 4Ṽ0(k � 0)/π h̄vF}−1/2 � 1, (15)

while, for all other channels, the coupling constant f gives rise to a tiny renormalization,
Ka �=c+ = 1 + f/π h̄vF � 1. The plasmon velocities of the four modes are va = vF/Ka and
hence the charged (c+) mode propagates with higher velocity than the three neutral modes.
The dimensionless Luttinger parameters measure the correlation strength in the system, with
the noninteracting point at Ka = 1 and repulsive interactions leading to Kc+ < 1. For the
long-ranged interaction (4), the logarithmic singularity in Ṽ0(k) requires the infrared cut-off
k = 2π/L due to the finite length L of the SWNT, resulting in

Kc+ =
{

1 +
8e2

πκh̄vF
ln(L/2πR)

}−1/2

. (16)

Since h̄c/e2 � 137, we estimate e2/h̄vF = (e2/h̄c)(c/vF) ≈ 2.7, and therefore Kc+ is typically
in the range 0.2–0.3. This estimate does only logarithmically depend on L and R and therefore
is expected to be almost independent of the sample under study. The Luttinger parameter (16)
can also be written in the form

Kc+ =
(

1 +
2Ec

�

)−1/2

,

where Ec is the charging energy and � the single-particle level spacing. The small value
predicted here implies that a metallic SWNT should be a strongly correlated system displaying
pronounced non-Fermi liquid effects.

It is clear from equations (13) and (14) that, for f = b = 0, a SWNT constitutes a
realization of the LL. We therefore have to address the effect of the nonlinear terms associated
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with the coupling constants f and b. This can be done by means of the renormalization group
approach. Together with a solution via Majorana refermionization, this procedure allows for
the complete characterization of the non-Fermi-liquid ground state of a clean nanotube [6, 7].
From this analysis, one finds that, for temperatures above the exponentially small energy gap

kBTb = D exp[−π h̄vF/
√

2b] (17)

induced by backscattering processes, the SWNT is adequately described by the LL model and
H (1,2)

I can effectively be neglected. A rough order-of-magnitude estimate is Tb ≈ 0.1 mK.
In the remainder, we focus on temperatures well above Tb, where the nonlinearities can be
neglected and the Luttinger picture applies.

2.2. Sugawara formulation

In the following discussion of ESR theory, it is mandatory to keep the SU(2) spin symmetry
explicit at all stages. To do so it is advantageous to avoid the Abelian bosonization used above,
which breaks the spin symmetry by hand, but rather employ the Sugawara formulation [9]
which manifestly respects SU(2) spin invariance. This formulation is, in fact, fully equivalent
to a Wess–Zumino–Witten theory, even with the flavour degeneracy due to the two Fermi
points [9]. Since our main interest is in spin properties, we shall, however, suppress the
flavour index for most of what follows but return to the complexities added by it later, see
section 5. Instead of four channels, we then have a two-channel LL, with interaction constants
for charge, Kc = (Kc− + Kc+)/2 � (1+ Kc+)/2, and spin, Ks = (Ks−+ Ks+)/2 � 1. In Abelian
bosonization, in order to impose the correct spin symmetry, one then fixes Ks = 1 [9]. This
procedure is not necessary in the Sugawara treatment below. Inclusion of magnetic Zeeman
fields B (orbital effects play no role here) only affects the spin sector and, in general, could
renormalize Ks. However, this renormalization is irrelevant to ESR, which probes the finite
energy scale ≈B [11]. In addition, the velocities vc/s = vF/Kc/s are used in the following.

The Sugawara formulation uses the charge (JL/R) and spin currents �JR/L for right- and
left- (r = ± = R/L) moving electrons described by chiral 1D fermion operatorsψr=R/L(x, t),
where we suppress the additional spin index σ . In terms of these field operators, chiral SU(2)
spin current operators are given by

�JR,L(x) = 1
2 :ψ†

R/L(x)�σψR/L(x):, (18)

where the colons denote normal ordering and Pauli matrices �σ act in spin space. They obey
Kac–Moody commutation relations (µ, ν = x, y, z):

[JµL/R(x), J νL/R(x
′)] = ±iδ′(x − x ′)δµν/4π + iεµνλ J λL/R(x)δ(x − x ′). (19)

Likewise, charge current operators are defined as

JR,L = :ψ†
R/L(x)ψR/L(x):, (20)

where spin indices are summed over. Using these current operators, the LL in the U(1) ×
SU(2)-invariant Sugawara formulation is [9]

H0 = Hc + Hs, (21)

with decoupled charge and spin parts. The charge sector is described by the U(1)-invariant
Hamiltonian:

Hc = πvc

2

∫
dx (:JR JR + JL JL: + gc:JL JR:). (22)
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The coupling gc is determined by the Luttinger parameter Kc. Explicit expressions can be
found in [9], but they are not required below. In particular, in the noninteracting limit, gc = 0
and vc = vF. The SU(2)-invariant spin Hamiltonian Hs commuting with Hc is

Hs = 2πvs

3

∫
dx : �JR · �JR + �JL · �JL: + gs

∫
dx : �JR · �JL:, (23)

where vs ≈ vF is the spin velocity and gs = bvs is the coupling constant for electron–electron
backscattering processes. In a dynamical spin-sensitive ESR measurement, one should not
simply discard this coupling despite the above thermodynamic argument invoking the smallness
of gaps [8]. The LL Hamiltonian (21) completely decouples when expressed in terms of spin
and charge currents (or the spin/charge bosons of Abelian bosonization). This remarkable fact
leads to the phenomenon of spin–charge separation, and unless the SO interaction couples spin
and charge sectors, ESR will only probe the spin sector.

2.3. Electron spin resonance

Adopting the conventional Faraday configuration, the ESR intensity at frequency ω is
proportional to the Fourier transform of the transverse spin–spin correlation function [11]:

I (ω) =
∫

dt eiωt 〈S+(t)S−(0)〉, (24)

where the static magnetic field points along the z axis, �S = ∑
i
�Si is the total spin operator

and S± = Sx ± iSy . The Hamiltonian can be written as H = H0 + HZ + H ′, where H0

represents the SU(2)-invariant nanotube model (21) including electron–electron interactions,
HZ = −geµB �B · �S is the Zeeman term (below, often geµB = 1) and H ′ represents SU(2)
spin-symmetry breaking terms, in particular the SO coupling. Inserting a complete set of
eigenstates |a〉 of H in equation (24), the ESR intensity follows as

I (ω) = 1

Z

∑
a,b

e−Eb/kB T δ(ω − (Ea − Eb))|〈a|S−|b〉|2. (25)

In the absence of H ′, there are only contributions from matrix elements between eigenstates
with equal total spin Sa = Sb. Then all states with Sz

a = Sz
b − 1 will lead to a δ peak at

frequency ω = B . For instance, at zero temperature, the application of a magnetic field
B , taken to be large enough to overcome a spin gap possibly present at B = 0, leads to
a ground state with finite magnetization, S0 �= 0 and the states with Sz

a = Sz
0 − 1 again

yield the δ peak. This can be made explicit as follows. Since [H0 + HZ , S−] = BS−, one
has (H0 + HZ )S−|0〉 = S−(H0 + HZ)|0〉 + BS−|0〉 and identifying S−|0〉 = |a〉 one gets
Ea = E0 + B and thus I (ω) = I0δ(ω − B). Any perturbation preserving SU(2) invariance
will neither shift nor broaden this peak, even at finite temperature [12]. To get nontrivial ESR
spectra, one has to identify the leading perturbation breaking SU(2) invariance, which will
cause a finite linewidth and shift of the ESR peak. In metallic systems like SWNTs, one has
to consider the SO interaction. This is done in the next section.

3. Spin–orbit coupling

3.1. Microscopic derivation

In our derivation of the SO term, we shall neglect electron–electron interactions. Local
electric fields exerted by other electrons on a given electron are typically weak compared
to the ionic fields [15] and will generally only weakly renormalize the SO couplings from their
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noninteracting values. In a single-particle picture, the SO interaction then appears because
an electron moving in the electrostatic potential �(�r ) experiences an effective magnetic field
�v × ∇� in its rest frame. With �p = m�v the SO interaction is, in second-quantized form,

H ′ = − geµB

4m

∫
d�r �†[( �p × ∇�) · �σ ]�. (26)

This represents the starting point for our discussion of the SO coupling.
For a microscopic lattice description, the electron field operator�σ (�r) (whose low-energy

expansion is given above in equation (2)) can now be expressed in terms of the electron operators
ci for a honeycomb lattice site i at �ri :

�σ (�r) =
∑

i

χ(�r − �ri)ciσ , (27)

where χ(�r − �ri ) is the corresponding Wannier wavefunction centred at lattice site �ri . These
localized Wannier orbitals can be chosen as real-valued functions even when hybridization
with s-orbitals is important. For the simplest case, 2pz orbital wavefunctions could be used,
with z perpendicular to the graphene plane:

χ(�r) = (z/4a0

√
2π) exp(−r/2a0),

where a0 = h̄2/6me2 is the effective Bohr radius.
Inserting the expansion (27) into (26), the SO interaction is [10, 16, 17]

H ′ =
∑
〈 jk〉

ic†
j (�u jk · �σ)ck + h.c. (28)

which explicitly breaks SU(2) symmetry. The SO vector �u jk = −�ukj has real-valued entries
and can be written as

�u jk = geµB

4m

∫
d�r �(�r)[∇χ(�r − �r j)× ∇χ(�r − �rk)]. (29)

The on-site term ( j = k) is identically zero, and since the overlap decreases exponentially with
|�r j − �rk |, we keep only nearest-neighbour terms in equation (28). Equation (28) also allows us
to incorporate electric fields due to impurities or close-by gate electrodes. To connect the SO
vector to the experimentally measurable SO relaxation rate, τ−1

SO , we estimate this rate using
Fermi’s golden rule. Assuming a constant �u, the probability for a transition from the initial
state |i〉 = |k,↑〉 to the final state |f〉 = |k ′,↓〉 is given by �i→f = 2π |〈f |H ′|i〉|2δ(Ei − Ef)

and summing over all final states:

τ−1
SO = 8(u2

x + u2
y)/3vs. (30)

For SWNTs, SO couplings are generally expected to be small. This is in accordance with our
approach since the SO vector (29) vanishes by symmetry for an ideal 2D honeycomb lattice.
A finite nearest-neighbour SO coupling can only arise due to the finite curvature, stray fields
from nearby gates or due to impurities, which break the high symmetry. Focusing for clarity
on the curvature-induced SO coupling, the SO vector for achiral tubes can be seen to depend
only on bond direction:

�u�ri ,�ri +�δn
= �un, (31)

where the nearest-neighbour bonds �δn (n = 1, 2, 3) connect the two sublattices of the graphene
sheet in real space. For explicit representations of the vectors �δn , see, for example, [17].
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3.2. Low-energy form

From now on we then restrict our analysis to achiral tubes and construct the low-energy field
theory Hamiltonian H ′ describing the SO interaction (28), including the flavour indices for
the moment. Using equation (31), the microscopic form is

H ′ =
∑

�r

3∑
n=1

(ic†
�r ,p=+ �un · �σc�r+δn,p=− + h.c.),

where �r runs over all lattice sites of the sublattice p = + and we have made the sublattice
dependence of the lattice electron operators explicit (again, spin indices are implicit). The
expansion (2) implies

c�r ,p,σ = (2πR)−1/2
∑
α

e−iα �K ·�rψpασ (x),

which yields, after y integration and Taylor expansion of ψp=−,ασ (x + êx · �δn), the result

H ′ =
∫

dx
∑
α,n

e−iα �K ·�δnψ†
p=+,α(x)(i�un · �σ)[ψp=−,α(x) + (êx · �δn)∂xψp=−,α(x)] + h.c. (32)

where we use the unit vector êx along the tube axis. Terms involving higher-order derivatives
of the field operators are highly irrelevant and can safely be ignored. In equation (32), we have
also neglected oscillatory terms that vanish in doped SWNTs because of axial momentum
conservation. These oscillations are governed by the wavevector 2|µ|/vF corresponding to the
doping level µ. In practice, intrinsic doping is unavoidable, but for a commensurate situation
(µ = 0), additional terms do arise that are ignored in this section.

Next we define vectors given in terms of the vectors specified in (31):

�u1α =
3∑

n=1

exp(−iα �K · �δn)�un

�u2α =
3∑

n=1

exp(−iα �K · �δn)�un(êx · �δn).

We then obtain from equation (32) the form H ′ = H1 + H2 with

H1 =
∫

dx
∑
α

ψ†
p=+,α(x)(i�u1,α · �σ)ψp=−,α(x) + h.c. (33)

and

H2 =
∫

dx
∑
α

ψ†
p=+,α(x)(i�u2,α · �σ)∂xψp=−,α(x) + h.c. (34)

It is then apparent that H1 will give the dominant contribution (relevant in the renormalization
group sense, scaling dimension 1), while H2 is marginal (scaling dimension 2). Since SO
interactions are always small, the renormalization group arguments around the Luttinger fixed
point with no SO couplings can be safely used here. Note that all contributions neglected
here either violate momentum conservation or have scaling dimensions �3, i.e. are highly
irrelevant.

The final step is to move from the sublattice description to the r = R/L basis using a
unitary transformation. Noting that the term involving Re �u1α involves oscillatory contributions
that can be neglected by virtue of momentum conservation, the dominant low-energy SO
contribution takes the form

H1 =
∫

dx
∑
α

�λα · ( �JL,α − �JR,α), (35)
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with effective SO vectors
�λα = 2 Im �u1,α = 2 Im

∑
n

e−iα �K ·�δn �un . (36)

In the analysis of section 4, for clarity, we shall ignore the flavour index, but it is clear from
the above how to add it to the theory. The subleading term H2 is (ignoring the flavour index
and again omitting oscillatory terms)

H2 =
∫

dx
∑

r=R/L

ψ†
r
�λ′ · �σ i∂xψr + h.c. (37)

where
�λ′ =

∑
n

e−i �K ·�δn (êx · �δn)�un.

4. ESR spectrum from field theory

In the following, we will keep only the leading contribution (35) and neglect the marginal term
H2. In the numerical analysis of section 5, the full SO interaction will be considered to assess
the accuracy of these approximations. Since SO couplings are typically very small, however,
the above perturbative reasoning, suggesting we drop H2 and the oscillatory terms, is expected
to work. Remarkably, the SO interaction then acts exclusively in the spin sector and hence
does not spoil spin–charge separation. Therefore the ESR intensity can be computed from the
spin sector alone.

For convenience, we define
�λr=R/L=± = �B ± �λ, (38)

which represents an effective magnetic field acting separately on the chiral (right/left-moving)
spin currents. The presence of two pseudo-fields already hints at the outcome of our calculation
below, namely the emergence of a double peak spectrum. Their position will then be given
by the absolute values λr = |�λr |. The spin Hamiltonian governing the ESR spectrum I (ω) is
then

H = Hs −
∑

r

∫
dx �λr · �Jr , (39)

with Hs given in equation (23). The Heisenberg equation of motion for the chiral spin current
operators is

(∂t ± vs/3∂x) �Jr = ∓(gs/4π)∂x �J−r + gs �JR × �JL − �λr × �Jr . (40)

Taking �B = Bêz, and using �S = �JR + �JL, the ESR spectral density is

I (ω) =
∫

dt dx eiωt
∑
rr ′

〈J +
r (x, t)J −

r ′ (0, 0)〉. (41)

We then compute the ESR spectrum using the Sugawara spin Hamiltonian (39). An independent
route would proceed via fermionization [10]. For simplicity, we discuss the case gs = 0 (no
backscattering), but the method is flexible enough to allow treatment of the general case as
well. However, the numerical analysis of section 5 indicates that, indeed, the backscattering
interaction does not affect the results in a significant way.

Since the spin Hamiltonian decouples in the chiral spin currents, we just need to add the
contributions due to the two chiralities. In equilibrium, using the spin susceptibility 1/4πvs

of a chiral fermion, we have

〈 �JR〉 = 1

4πvs

�λR. (42)
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Using the fluctuation–dissipation theorem, we can now express I (ω) in (41) in terms of the
imaginary part of the susceptibility tensor χr (q, ω):

I (ω) =
∑
r=±

∑
µ,ν=x,y

2

1 − exp(−ω/kBT )
Im χµνr (q → 0, ω). (43)

The susceptibility can in turn directly be obtained from the equation of motion (40). Formally
defining the matrix (�r )

µν = εµναλαr , we find

χr (q → 0, ω) = 1

4πvs
[iω +�r ]−1�r ,

and straightforward algebra then yields the ESR spectrum:

I (ω) =
∑
r=±

[1 + λz
r/λr ]2 λr

4vs(1 − e−λr/kB T )
δ(ω − λr ). (44)

As expected, the single δ peak splits into two peaks but there is no broadening. The peak
separation is |λ+ − λ−|, see (38), and the peak heights are generally different. To lowest
order in λ/B , the two peaks are located symmetrically around ω = B . Notice that, for �B
perpendicular to the effective SO vector �λ, the splitting is zero.

It should be stressed that these results hold both for the noninteracting and the interacting
cases. However, for the interacting case realized in SWNTs the double-peak structure is only
possible if spin–charge separation is present. Otherwise the charge sector will mix in, leading
to broad bands with threshold behaviours [13]. Closer inspection shows that inclusion of
the subleading term (37) preserves the splitting into two peaks but the peaks now acquire a
finite width ∼|�λ′|. Similarly, the effects of backscattering are expected to be small. It is
important to point out that the double-peak spectrum would also show up in the noninteracting
case, and hence its experimental observation does not represent a true proof for spin–charge
separation. However, it would certainly give strong evidence, as in the interacting situation
the double peak survives only when spin–charge separation is realized.

In practice, to get measurable intensities, one may have to work with an ensemble of
SWNTs. The proposed experiment may be possible using electric-field-aligned SWNTs, or
by employing arrays of identical SWNTS. In more conventional samples with many SWNTs,
however, the SO vector �λ can take a random direction. For results on the averaged spectrum,
see [10].

5. ESR spectra for armchair SWNTs: two-leg Hubbard ladders

In this section we discuss an alternative description of the ESR spectrum via a lattice fermion
description. We shall numerically compute ESR spectra for a Hubbard chain and a two-leg
Hubbard ladder [14]. These models ignore the long-range part of the Coulomb interactions,
which makes them less accurate for the description of charge transport. Since the long-range
tails of the interaction do not affect the spin dynamics, however, this does not create a problem
for the spin problem at hand.

Modelling the SWNT by a two-leg Hubbard ladder is attractive for the following reasons:

• Backscattering interactions as well as commensurability effects (umklapp scattering) are
included.

• The two flavour degrees of freedom are taken care of.
• Band curvature effects are taken into account.
• The marginal SO term (37) as well as all irrelevant contributions can be kept.
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• For the Hubbard chain, it is known that any magnetic field spoils spin–charge
separation [18]. The importance of this effect for SWNTs can be assessed.

• Accurate numerical techniques are available for such models.

To gain a broader perspective and also to make contact with other 1D conductors,before dealing
with the more complex two-leg ladder system, we first consider a 1D Hubbard chain [9] with
uniform SO coupling,

5.1. Hubbard chain

The 1D Hubbard model with a uniform SO coupling vector �λ is defined by

H =
∑

n

[c†
n(−t + i�λ · �σ)cn+1 + h.c.] + U

∑
n

nn↑nn↓ − B
∑

n

Sz
n . (45)

For �λ = 0, equation (45) leads to a LL phase at low energies [9]. It is worth noting that then
the exact solution of (45) shows that, with a magnetic field, the charge and spin sectors get
mixed [18]. To make progress, we gauge away the SO term by the unitary transformation

cn → dn =
{

cn (n odd),

exp(iαλ̂ · �σ)cn (n even),

where α = arctan(λ/t), λ̂ = �λ/λ with λ = |�λ|. The hopping amplitude then changes as
t → t̃ = t + λ sin α and one can easily see that nn↑nn↓ = ñn↑ñn↓, where ñnσ = d†

nσdnσ . Then
the Hamiltonian (45) can be rewritten as

H = −t̃
∑

n

(d†
n dn+1 + h.c.) + U

∑
n

ñn↑ñn↓ − B
∑

n

S̃z
n

and the spin operator as

�Sn =
{

1
2 d†

n �σdn (n odd),

1
2 d†

n (e
iαλ̂·�σ �σe−iαλ̂·�σ )dn (n even).

The transformed picture is easier to use in practical calculations. We have calculated the ESR
spectrum for (45) using exact diagonalization for small lattices.

The main features emerging from exact diagonalization can be seen in figure 1. For
weak interactions (see figure 1(a)) we recover the two-peak structure predicted by field theory,
see (44), with the peaks symmetrically arranged aroundω = B but with different peak heights.
In addition, no splitting is seen for �B perpendicular to the SO vector �λ. The interaction
dependence of the ESR spectrum is shown in figure 1(b). Strong interactions suppress one
of the peaks and enhance the other and also give rise to more structure in the spectrum. This
behaviour can be traced back to the effects of band curvature. Note that, for increasing U ,
the distance between both peaks decreases. This feature can be qualitatively explained by a
decrease of the spin velocity vs with U , i.e. for a flatter band the SO splitting is less effective.

5.2. Two-leg Hubbard ladder: armchair SWNTs

We are now ready to generalize the above treatment to armchair SWNTs. Mapping the
interacting honeycomb lattice Hamiltonian for armchair SWNTs onto the two-leg Hubbard
model [14], one finds

H0 =
∑

ni

(−tc†
ni c(n+1)i − t⊥c†

n1cn2 + h.c.) + U
∑
n,i

nn,i,↑nn,i,↓. (46)

While under the mapping, t⊥ = t up to 1/R corrections [14], we shall allow for t⊥ �= t to
have better numerical accuracy. Here we also want to include the SO interaction (28) in this
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Figure 1. Exact diagonalization results for the T = 0 ESR spectra of a Hubbard chain with
λ = 0.1, B/t = 0.2, and artificial broadening 0.05t . In (a) ESR spectra for U/t = 1 are shown
for different angles γ between �λ and �B. In (b) the U dependence is shown for γ = 0. All results
are for 12 lattice sites and 4 electrons.

mapping. We use the SO vectors (31), and for simplicity set �un=1 = 0, since this SO vector
does not appear in the leading low-energy SO vector �λ in (36) for armchair SWNTs. This
simplification also allows for numerically feasible calculations. Writing �wn = (−1)n �W + �w,
where �w = (�u2 − �u3)/2 and �W = (�u2 + �u3)/2, the SO term can then be written as

H ′ =
∑

n

i(c†
n,1 �wn · �σcn+1,1 + c†

n,2 �wn+1 · �σcn+1,2) + h.c., (47)

consisting of a uniform and an alternating contribution:

c†
n,1/2 �wn · �σcn+1,1/2 = c†

n,1/2 �w · �σ cn+1,1/2 ± (−1)nc†
n,1/2

�W · �σcn+1,1/2.

The resulting model is studied in the remainder of this section for the special case that both
�w and �W are parallel to the uniform magnetic field. Note that �w corresponds to the leading
SO vector �λ in the low-energy theory, while �W is related to the subleading vector �λ′, see
equation (36). Moreover, away from half-filling, following standard reasoning, one may
expect that the alternating terms average out. Nevertheless, they will be kept below, but we
indeed confirm that in large systems they lead only to small effects. When the above gauge
transformation is applied again, we arrive at a two-leg Hubbard ladder (46), but with the on-
chain hoppings t carrying both a uniform phase exp(iφu) and an alternating phase exp(iφa)

determined by �w and �W , respectively, see figure 2.
Let us first discuss the noninteracting case. For U = 0, the solution of equations (46)

and (47) is straightforward. The eigenenergies are given by (a is the lattice constant)

E1±(kx) = −
√
(2t cos(kxa + σφu))2 ± 4t t⊥ cos(kxa + σφu) cos(φa) + t2

⊥

E2±(kx) =
√
(2t cos(kxa + φu))2 ± 4t t⊥ cos(kxa + φu) cos(φa) + t2

⊥
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Figure 2. Sketch of the two-leg Hubbard ladder including SO couplings of the type considered
here. The arrows indicate the phase for spins up. Spins down have the opposite phase.
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Figure 3. (a) ESR spectrum and (b) dispersion relation of the noninteracting model for t = t⊥ = 1
and different phase configurations. The dotted (full) curves in (b) correspond to spins down (up).

where σ = ±1 for up or down electrons, respectively. In figure 3 we show the noninteracting
T = 0 ESR spectrum in the presence of both the uniform and the alternating phase. The main
excitations contributing to each peak are sketched in figure 3(b). The uniform phase case (see
the dotted curve) produces a splitting of the principal Zeeman peak. Due to the different parity
of the k = 0 and π bands, for the pure uniform case there is no ESR interband transition.
When the alternating phase is turned on, the folding of the Brillouin zone produces peaks at
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Figure 4. ESR spectra for periodic quarter-filled ladders with a uniform phase φu = 0.1, t = 1
and t⊥ = 1.2.

higher energies. As the parity symmetry is broken, interband transitions are now possible.
The opening of the small gap due to the alternating phase is manifested in the splitting seen
in peaks A, B and C. The broad structure (F and D) between the highest peaks corresponds to
transitions between branches with opposite curvature.

Next we discuss results for U > 0 using the density matrix renormalization group (DMRG)
technique [19, 20]. We have used periodic boundary conditions, keeping 256 states and
the finite-system algorithm. The ESR spectrum (24) at T = 0 has been calculated using
the dynamical DMRG technique [21, 22] for a two-leg ladder with uniform phase φu only.
Additional small alternating phases φa did not change the spectrum significantly. In figure 4
we present these results for a quarter-filled chain and t⊥ = 1.2 and t = 1. These parameters
are used in order to clearly see the effect of the SO coupling, since for this filling the excitations
occur near the linear term of the cosine bands for system sizes that are multiples of 4. The
effect of the correlations mainly consists of a small shift of the peaks, but the double-peak
spectrum is preserved. Therefore the numerical results lend support to the basic prediction
of the analytical low-energy theory and show that the expected double-peak ESR spectrum is
stable with respect to the above-mentioned perturbations.

6. Conclusions

We have reviewed the analysis of the ESR spectrum produced by the SO coupling in SWNTs.
The effective field theory analysis shows that, at low energy, the SO interaction only acts
in the spin sector and the single Zeeman peak, characteristic of a system with SU(2) spin
symmetry, splits into two peaks with no broadening. This result relies in an essential way on
the property of spin–charge separation characteristic of the LL state realized in the SWNT.
Thus the observation of such a splitting would point to this elusive feature.
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The field theory analysis has been complemented by the exact numerical calculation of
the ESR spectrum for Hubbard models on a single chain and on a two-leg ladder. While
these models are not able to describe reliably the charge transport properties of SWNTs due to
neglect of the long-range tails of the Coulomb interaction, they are appropriate descriptions of
this spin problem. The numerical analysis confirms the field theory predictions, including the
validity of the approximations involved in their derivation. In addition, it reveals additional
structure in the spectrum due to band curvature and higher energy processes, which are not
captured by the field theory approach.
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